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Abstract
Underwater vehicles are employed in the exploration of dynamic environments where tuning of a specific controller for each
task would be time-consuming and unreliable as the controller depends on calculated mathematical coefficients in idealised
conditions. For such a case, learning task from experience can be a useful alternative. This paper explores the capability
of probabilistic inference learning to control autonomous underwater vehicles that can be used for different tasks without
re-programming the controller. Probabilistic inference learning uses a Gaussian process model of the real vehicle to learn the
correct policy with a small number of real field experiments. The use of probabilistic reinforcement learning looks for a simple
implementation of controllerswithout the burden of coefficients calculation, controller tuning or system identification. A series
of computational simulations were employed to test the applicability of model-based reinforcement learning in underwater
vehicles. Three simulation scenarios were evaluated: waypoint tracking, depth control and 3D path tracking control. The 3D
path tracking is done by coupling together a line-of-sight lawwith probabilistic inference for learning control. As a comparison
study LOS-PILCO algorithm can perform better than a robust LOS-PID. The results show that probabilistic model-based
reinforcement learning can be a deployable solution to motion control of underactuated AUVs as it can generate capable
policies with minimum quantity of episodes.

Keywords PILCO · LOS · Underwater vehicle · Path tracking · Reinforcement learning

1 Introduction

Autonomous underwater vehicles play an important role in
the exploration of the seas. This exploration is primarily
driven by commercial, military and scientific needs. In this
context, the proper and correct navigation of the vehicle is a
key requirement. Motion controllers that are used for navi-
gating AUVs can be classified in four basic strategies: point
stabilization (Dong et al. 2015), trajectory tracking (Alonge
et al. 2001), path following (Breivik and Fossen 2005) and
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path tracking (Xiang et al. 2011). Point stabilization con-
trollers stabilize a vehicle to the desired goal posture from an
initial configuration (Forouzantabar et al. 2012). Trajectory
tracking controllers use a virtual vehicle to generate a ref-
erence trajectory that has an associated time required to be
employed by the real vehicle (Do et al. 2004). In the case of
path following the vehicle is forced to pursue the desired path
without temporal specifications. In the case of path following
controller, it usually employs the line-of-sight (LOS) cou-
pled with another controller to minimize the error between
the obtained geometric references and the vehicle variables.
The final strategy is path tracking, which combines trajec-
tory tracking and path following by the introduction of a
virtual time parameter to force the vehicle to complete the
path whitin a specific time.

The difficulties of controlling underwater vehicles arises
due to non-linear and time-varying dynamics of underwater
vehicles, uncertainties in its hydrodynamic coefficients and
disturbance in the environment (e.g. ocean currents). Further-
more, all complexities are exacerbated for the controller in
underactuated vehicles (Forouzantabar et al. 2012); underac-
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tuated vehicles havemore degrees of freedom tobe controlled
than surfaces of control. Nevertheless, this configuration is
more prevalent as it is the most energy efficient design for
travelling at high speeds (Xiang et al. 2015).

Waypoint tracking is the most common methodology
to control a vehicle, e.g. commercial vehicles such as
Gavia (Roper 2007) and REMUS (Holsen 2015) use this
methodology. Waypoint tracking is directing the vehicle to
approximate to a series of specific target points. The vehicle
calculates the required direction to which the vehicle should
be directed and upon arriving at the proximities of a point
is given a new target. Like many industries, PID is the most
common methodology to control the vehicle orientation and
speed. However, there is research to employ more robust
options than PID. Rout and Subudhi (2017) employs a NAR-
MAX model from the vehicle and a constrained self-tuning
controller to direct the vehicle to the respective target. Other
methodologies employ a combination of LOS for waypoint
(Ataei and Yousefi-Koma 2015) and a standard controller or
backstepping techniques to minimize the error between the
vehicle position and the desired position (Saravanakumar and
Asokan 2011).

In the case of LOS, commercially LOS-PID and LOS-
Fuzzy controllers are employed as their implementation are
simpler and more accepted in the industry (Yu et al. 2016;
Xiang et al. 2017;Wang et al. 2017). Other research asCahar-
ija et al. (2012) used a LOS guidance lawwith two integrators
and three feedback controllers to compensate for external
unknown perturbation such as ocean current which is one of
the weaknesses for methodologies as PID/Fuzzy controllers.
Yang et al. (2016) have used an alternative methodology of a
grey prediction to obtain the next AUV position in advance
and then use LOS to calculate the desired angles, such that
if there is environmental interference, the vehicle will not be
affected.

In the search of more robust controllers, nonlinear control
techniques had been explored. Repoulias and Papadopoulos
(2007) have designed a horizontal path following controller
based on Lyapunov stability theorem and backstepping
method. In Liang et al. (2015), a method consisted of Lya-
punov stability theorem and feedback gain backstepping
reduce the complexity of the controller and improve adjusta-
bility of the parameters. Another methodology proposes a
global path following for AUV based on the same coordi-
nates to achieve global asymptotic stability of the following
error (Gao et al. 2010). Following the research of backstep-
ping, Liang et al. (2016) have adopted fuzzy backstepping
sliding mode control to overcome non-linearities, uncertain-
ties and external disturbances.

However, the aforementioned research in controls are
focused to provide a more robust path following perfor-
mance. The controller still requires the calibration of param-
eters or specific design of observers to identify the unknown

parameters of the dynamic model. A methodology to over-
come this is the use ofmachine learning algorithms. Themost
prominent algorithm in machine learning is neural networks.
In particular, the research to control underwater vehicles had
focused on the use of machine learning algorithms to rec-
ognize uncertainties. Chu and Zhu (2015), and Bian et al.
(2012) have designed a combined version of control law
for the convergence of the kinematic model and an adaptive
backstepping sliding control based in radial basis function
(RBF) neural network to identify the unknown parameters
of the dynamic model. In a similar way, Wang et al. (2018)
have reduce the backstepping complexity by the inclusion of
a second-order filter to obtain the derivatives of the virtual
controller and filter high-frequency measurement noise, and
coupled the filter with an RBF neural network that compen-
sates for vehicle uncertainties.

Although the practicality of machine learning has been
largely to identify uncertainties in AUV control, some
machine learning algorithms are capable of doing more such
as controlling the vehicle directly. Recently, there has been
increasing research efforts on the use of reinforcement learn-
ing to generate policies to control underwater vehicles and
robots in general. An example of machine learning control
can be seen in (Kawano 2005), where reinforcement learn-
ing (RL) based on the Markov decision process (MDP) was
employed to produce a policy capable of controlling a vehi-
cle around an obstacle with a minimum cost. In the case of
path-following, reinforcement learning had been applied to
path following of ships. In Shen and Guo (2016), an actor-
critic multilayer perception reinforcement learning is used to
reduce the tracking error to zero. Deep reinforcement learn-
ing has also been proposed as a possible solution for the
tracking problem. Yu et al. (2017) employed two neural net-
works. The primary neural network selects the action and
the secondary evaluates whether the produced action is valid;
with further modification through a deep deterministic pol-
icy gradient.Another applicationused continuous actor-critic
learning automaton algorithm to teach an AUV to follow a
pipeline (Fjerdingen et al. 2010), considering the improved
performance in search of the policy of this algorithm the
number of episodes over the platform can be over the hun-
dreds.

RL can be divided into two methodologies: model-
based methods and model-free methods, such as Q-learning
(Watkins 1989) or TD-learning (Sutton and Barto 2011). The
application of path-following control based in traditional RL
such as Q-learning (Gaskett et al. 1999) is highly complex
and difficult as a high quantity of experiments is required to
acquire data and test each policy iteration. The additional dif-
ficulties in underwater vehicles are vehicle safety, maximum
time underwater and computational power. RL for a sys-
tem with low-dimensional state spaces and fairly favourable
dynamics can require thousands of trials to arrive at the
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appropriate policies (Deisenroth et al. 2015; Yu et al. 2017).
Carlucho et al. (2018) explored the application of deep RL
over the data obtained from the navigation systemand a deter-
ministic policy gradient algorithm to find a policy control
velocities and rotation for a fully actuated AUV. Similarly,
Knudsen et al. (2019) applied a deep RL algorithm coupled
with a proportional derivative controller to maintain a con-
stant position and orientation in respect to a reference point.

Model-based RL methods are more efficient than model-
free methods in searching for a useful policy, as the policy
is searched over a model and not the real platform. How-
ever, their accuracy can suffer severely from model errors.
A solution to address the model errors is the use of proba-
bilistic models to express its uncertainty. An application of
model-free methodologies that use a probabilistic method-
ology was propose by De Paula and Acosta (2015). Their
methodology use a on-line selective reinforcement learning
approach combined with Gaussian Process (GP) regression
for learning reference tracking control policies given no
prior knowledge of the dynamical system. Deisenroth et al.
(2015) have proposed Probabilistic Inference for Learning
Control (PILCO), which is a model-based policy search
method. The probabilistic model uses non-parametric Gaus-
sian processes (GPs) to characterise the model uncertainty
and the policy improvement is based on analytic policy gradi-
ents which employs deterministic approximate interference
techniques. Due to probabilistic modelling and inference
approach, PILCO can achieve higher learning efficiency than
othermethods in continuous state-action domains and, hence,
is directly applicable to complex mechanical systems, such
as robots.

In this paper, the authors explore the applicability of
PILCO to control underactuated AUVs by a series of simula-
tions with different objectives and target values. The selected
vehicle for the simulation is MULLAYA. MULLAYA is an
underactuated AUV designed by the Defence Science and
Technology Group of Australia as a research platform. The
main algorithms required byMULLAYA for deployment and
test of software and hardware are: depth control, waypoint
tracking and path following. The main goals of our imple-
mentation of reinforcement learning with PILCO are:

– Minimum quantities of episodes over the platform;
– Small test time over the platform;
– Minimumquantity of variables to be predicted by theGP;
and

– Vehicle safety.

2 Underwater vehicle mathematical model

In Fossen (1994) it was shown that the non-linear dynamic
equations of motion of an underwater vehicle can be

Fig. 1 AUV different reference frames, vehicle frame is equal to the
centre of buoyancy

expressed in vector notation defined by a state vector com-
posed by the vector v of velocities on the body frame of the
form [u, v, w, p, q, r ]T and the vector η of position in the
Earth fixed frame (Fig. 1) of the form [ξ, η, ζ, φ, θ, ψ]T such
that

Mv̇ + C (v) v + D (v) v + g (η) = τ (1)

with the kinematic equation

η̇ = J (η) v (2)

where η position and orientation of the vehicle in Earth-fixed
frame, v linear and angular vehicle velocity in body fixed
frame, v̇ linear and angular vehicle acceleration in body fixed
frame,M matrix of inertial terms,C (v) matrix of Coriolis
and centripetal terms, D (v) matrix consisting of damping
or drag terms, g (η) vector of restoring forces and moments
due to gravity and buoyancy, τ vector of control and exter-
nal forces, and J (η) rotation matrix that converts velocity
in a body fixed frame v to an Earth fixed frame velocity
η̇.

Equation (1) can be expanded into a more general equa-
tion of motion as has been shown in Prestero (2001) and
Gertler and Hagen (1967). The result of the expansion will
be a system of six equation with 73 hydrodynamic coeffi-
cients. However, for a complete model the control surfaces
must be modelled. In a general case, the resulting forces
and moments of a control surface (thrusters and fins) can be
expressed as (Fossen 1994)

Fprop = −K f prop |n| n
Mprop = −Kmprop |n| n (3)

L f in = K L|δfinδfinv2e
M f in = K M|δfinδfinv2e

(4)

A more accurate thruster model can be found in (Kim
and Chung 2006) with the inclusion of the motor model and
fluid dynamics. However, in this study, the linear paramet-
ric model from Fossen (1994) is used, the model employed
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do not consider the effect of fins over the total thruster
force.

3 LOS guidance lawmathematical
background

This section describes the mathematical background of the
3D guidance law employ in the present study for control of an
underactuated AUV. In this study, it was decided to employ
the LOS proposed in Xiang et al. (2017) as it is an extension
of the work of Fossen (1994).

If the vehicle kinematic is represented by its spatial

position p (t)
	= [x (t) , y (t) , z (t)]T and its velocity is rep-

resented by v(t) � ṗ (t) ∈ R
3 state is related to the {I }

frame. Also, the speed is represented by U (t)
	= |v (t)| =√

ẋ(t)2 + ẏ(t)2 + ż(t)2 > 0. The steering of the underac-
tuated AUV is characterized by the azimuth angle χ and
elevation υ (Fig. 2).

⎧
⎨
⎩

χ = atan2 (ẏ, ẋ)

υ = arctan

(
−ż√
ẋ2+ẏ2

)
(5)

If its consider a continuously path parametrized by a scalar
variable � ∈ R, the position of a point over the path is rep-
resented by pp (�) ∈ R

3 (Fig.3). Similarly, the orientation
of the point can be defined as

⎧
⎪⎨
⎪⎩

ψp = atan2
(
y′

p, x
′
p
)

θp = arctan

(
−z′ p√

x ′2
p+y′2

p

)
(6)

Fig. 2 LOS reference frames

Fig. 3 LOS main variables representation

where x ′
p = dxp/d� , y′

p = dyp/d� and z′ p = dz p/d�

. Hence the tracking error is expressed as:

ε = [xe, ye, ze]
T = RT

F

(
p − pp

)
(7)

where RT
F := Rz

(
ψp

)
Ry

(
θp

)

Ry =
⎡
⎣
cos

(
ψp

) − sin
(
ψp

)
0

sin
(
ψp

)
cos

(
ψp

)
0

0 0 1

⎤
⎦ (8)

Rz =
⎡
⎣

cos
(
θp

)
0 sin

(
θp

)
0 1 0

− sin
(
θp

)
0 cos

(
θp

)

⎤
⎦ (9)

If the followingLyapunov control function positive defini-
tive is

Vε = 1

2
εT ε (10)

The derivative of Eq. (10) can be written as

Vε = xe
(
Ud cos (ψr ) cos (θr ) −Up

)

+yeUd sin (ψr ) cos (θr ) − zeUd sin (θr ) (11)

where Ud is the desired composite speed of the AUV. The
auxiliary control input of the virtual point Pp is chosen as:

Up = Ud cos(ψr ) cos(θr ) + kx xe (12)

where the steering angles are:

⎧
⎨
⎩

ψr = arctan
(−ky ye

	y

)

θr = arctan
(
kz ze
	z

) (13)

If the guidance variables 	y and 	z > 0, the control gains
kx , ky, kz are positive constants. If Eqs. (12) and (13) are sub-
stituted into Eq. (11) and considering the relationship among
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inertial frame {I }, flow frame {W } and path frame {F}, the
desired azimuth angle υd and elevation angle χd can be writ-
ten as (Breivik and Fossen 2009):

υd = arcsin(sin θp cosψr cos θr + cos θp cos θr )

χd = atan2(χd y, χd x )
(14)

where

χd y = cosψp sinψr cos θr − sinψp sin θp sin θr
+ sinψp cos θp cosψp cos θr

(15)

χd x = − sinψp sinψr cos θr − cosψp sin θp sin θr
+ cosψp cos θp cosψp cos θr

(16)

In order to transform the path following to path tracking the
path was defined over time together with Eqs. (14) and (12).
This was to produce not only the desire angles but also the
required speed at each time instance.The steering error vector
can be expressed as [eμ, eυ, eχ ] where eμ = μd − μv , eυ =
υd − υv and eχ = χd − χv .

4 Probabilistic inference for learning control
(PILCO)

Adaptive controllers that consider uncertainty of the model
parameters usully are done by the addition an extra term in the
cost function to compensate for it. Here, the uncertainty of the
model parameters is penalized to improve themodel parame-
ter estimation. PILCO is based in themodelling ofmodel bias
and averaging over model uncertainty, where model uncer-
tainty is treated as temporally uncorrelated noise. However,
PILCO do not require sampling methods for planning, or is
it restricted to specific scenarios.

PILCO algorithm (Deisenroth et al. 2015; Deisenroth and
Rasmussen 2011) (Algorithm 1) employs GPs as the base
for policy search. A GP can be defined by a mean func-
tion m(·) and a positive definitive covariance function k(·, ·)
commonly known as kernel. Usually a prior mean function
m ≡ 0 and an exponentiated quadratic kernel (Eq. (17)) are
employed. This kernel only has two parameters to learn, l that
determines the length of the ‘wiggles’ in the function and σ 2

which determines the average distance of the function away
from its mean (Duvenaud 2014).

kSE(x, x ′) = σ 2 exp

(
− (x − x ′)2

2�2

)
(17)

Given n training inputs X = [x1, . . . , xn] and corresponding
training targets Y = [y1, . . . , yn], the posterior GP hyper-
parameters l and σ 2 are learned by evidence maximization
(Rasmussen 2004). The posterior predictive distribution
p( f∗|x∗) of the function value f∗ = f (x∗) for a test input

x∗ is Gaussian with mean and variance

m f (x∗) = kT∗
(
K + σ 2

ε I
)−1

y

σ 2
f (x∗) = k∗∗ − kT∗

(
K + σ 2

ε I
)−1

k∗ + σ 2
ε (18)

[1]init:Sample controller parameters θ ∼ N (0, I );
[2]Apply random control signals and record data.;
[3]repeat
[4] Learn probabilistic (GP) dynamics model;
[5] repeat
[6] Approximate inference for policy evaluation;
[7] Gradient-based policy improvement;
[8] Update parameters θ ;

until Convergence;
[9] return θ∗;

[10] Set π∗ ← π (θ∗);
[11] Apply π∗ to system and record data;

until Task Learned;
Algorithm 1: PILCO Algorithm

To find a policy π∗ which converges to the desired tar-
get, PILCO builds a probabilistic GP dynamics model. This
model will be the base for the deterministic approximate
inference and policy evaluation, followed by the analytic
computation of the policy gradients ∂ Jπ (θ)/∂θ for policy
improvement. The policy π is improved based on the gradi-
ent information ∂ Jπ (θ)/∂θ .

In our application, multiple GPs were employed as the
evolving model to be use in the reinforced learning process.
Each GPs employs a nonlinear autoregressive network with
exogenous inputs (NARX) structure composed of a input
vector X which contains the delayed signal Yp(t − 1) and
the delayed command signal u(t − 1) that predicts output
vector Yp.

Figure 4 show the general configuration employed for the
application of PILCO to MULLAYA AUV. The desire state
vector ηd is compare to the vehicle state η. At interaction
k = 0 a random generator will generate three random sig-
nals for the control surfaces (propeller, elevator and rudder) to
capture an initial GPs model. The nonparametric GPs model
is composed of n GPs model of single input single output
that model the relation between vector of input X and the
measured output from the vehicle. The policy search algo-
rithm produce a control policy by the minimization of the
cost function over the fitted GPs model. The resultant policy
is tested at k = 1 over the real robot.

5 Simulation setup

The underwater vehicle should be able to switch between
different controllers in a single mission depending on the
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Fig. 4 General diagram of our implementation of PILCO for control
of MULLAYA AUV

Fig. 5 Cost function evolution over running time with different sparse
point numbers at 23 Trials

task to be solved at a specific time. The possible variants
of controllers that an AUV can use in a mission are: fol-
low bottom, depth control, follow pipe, go-to-point, path
tracking, path following, etc. A series of different simu-
lations were designed to evaluate the capability of PILCO
to control an underactuated AUV within the three different
evaluation scenarios: way-point-tracking, Depth Control and
Path-Tracking. These three scenarios were chosen because
they were the main task required to deploy a mission plan-
ning algorithm for MULLAYA AUV.

The number of sparse points for each simulation was
established by running simulations with 500, 1000, 1500 and
2000 sparse points and plotting the average cost of the full
experiment in respect to the total running time. Figure 5 show
the result of total cost for path following policy. 1500 sparse
points for our simulation show the best results to obtain a
viable policy with the lower running time.

5.1 Vehicle model

The vehicle model employed in this research is derived from
semi-empirical calculation of the coefficients for the vehicle
MULLAYA. The vehicle is controlled by a single propeller,
a pair of elevator fins and a pair of rudder fins. General spec-
ifications of the vehicle are given in Table 1. The coefficients

Table 1 MULLAYA AUV
particulars

Property Value Unit

Length 1.56 m

Diameter 150 mm

Max RPM 3000 RPM

Weight 239.364 N

Buoyancy 246.2 N

Table 2 MULLAYA AUV coefficients employed in simulations

Coeff. Result Coeff. Result Coeff. Result

Xuu − 2.8 Zrp 0.68 Nuv −30.88

Xwq − 29.6 Yuudr 12.12 Npq −5.06

Xqq − 0.68 Nuudr − 7.51 Ixx 0.083

Xvr 29.6 Zuuds − 12.12 Iyy 3.08

Xrr − 4.95 Kpp − 1.30E−01 Izz 3.08

Yvv − 95.37 Kpdot 1.09E− 02 Nwp 0.66

Yrr − 2.45 Mww 6.96 Nur − 5.31

Yuv − 32.9 Mqq − 135.04 Xudot − 0.51

Ywp 29.64 Mrp 5.1 Yvdot − 29.64

Yur 7 Muq − 5.34 Nvdot 0.66

Ypq 0.68 Muw 27.16 Mwdot 0.66

Zww − 95.37 Mwdot − 0.68 Mqdot − 5.05

Zqq 2.45 Mvp − 0.68 Zqdot − 4.94

Zuw − 32.9 Muuds − 7.738 Zwdot − 29.64

Zuq − 7 Nvv 6.96 Yrdot 4.95

Zvp − 29.64 Nrr − 135.03 Nrdot 5.05

were calculated with the same technique of (Prestero 2001)
and the obtained coefficients are presented in Table 2. The
assumption of ourmathematical model are the same as (Pres-
tero 2001) with the exception of the thruster model. External
forces as ocean currents were not modelled. However, noise
was added to the sensor measurement of the navigation sys-
tem. As a engineering research platform, the vehicle will
undergo multiple transformations over time in shape and
internal engineering. This constant change requires the needs
of constant update of the controller for the vehicle. Possible
future modification can include vectorized propulsion sys-
tems and buoyancy controllers.

5.2 Waypoint tracking

The first type of controller evaluated for the underwater
vehicle is a waypoint tracking controller. These types of con-
trollers can be employed to transfer the vehicles between
location were more specific controllers are employed or if
can be work with the results of a path planning law that con-
vert a desire path in waypoints. In this case, it is desired to
control the vehicle velocity, azimuth and elevation such that
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Fig. 6 Control system block for waypoint tracking control with PID
and RL

the vehicle moves towards a specific location. The method-
ology used in this simulation is similar to the one employed
in Bi et al. (2014) but extended to 3D. If v is the vehicle state
vector [Xv,Yv, Zv, φv, θv, ψv] that can be divided in posi-
tion vector Xv and orientation vector `v on earth frame and
the target point is expressed as the vectorXT = [Xd ,Yd , Zd ]
the angles of the vector between the current position and the
desired position can be expressed as

ψd = tan−1
(
Yd − Yv

Xd − Xv

)

θd = tan−1

(√
(Yd − Yv)

2 + (Xd − Xv)
2

Zd − Zv

)
(19)

and the vector of angle errors can be expressed as the
difference between the vehicle orientation and the desire ori-
entation, i.e `e = [eψ, eθ , eu], where eψ = ψd − ψv and
eθ = θd − θv . The target of the policy will be to minimize
the error angles to zero and the surge speed error to zero. In
the proposed simulation a surge speed of 1.2m/s was set as
the desired speed with an initial position of [0, 0, 0] ,an ori-
entation of [0, 0, π/4] and an initial surge speed of 0.5m/s.
The first 12 s of real model simulation was employed to learn
the policy with a target point with coordinates [40, 40, 10].
A constraint to limit the vehicle turn < 180◦ was applied
to the process of policy testing over the vehicle model. A
second simulation with two target points [30, 30, 10] and
[90, 100, 10] is employed to check the viability of the pol-
icy. A total of 1000 sparse points was located as the limiter
from which a sparse model will be employ. The policy and
simulation were executed at 5Hz. A noise with variance of
σ 2 = 0.005was employed in the simulation and a variance of
σ 2 = 0.2 was employed for the start position of the vehicle.
When the vehicle arrives at 3m of the objective the vehicle
will be given the secondary target as the new objective. If the
vehicle arrives at 1m of the final target the simulation will
stop. These switching points are place in accordance with
the usual parameters of a mission planner (Thompson et al.
2020) (Fig. 6).

5.3 Depth control

A secondary scenario is explored to evaluate the controller’s
capability to keep a specific depth while traveling between
location. This is an extension to the previous search of a

policy, i.e. waypoint. In this scenario, we want the vehicle to
arrive at a specific depth before going to the desired location.
The policy will minimize the vector of error to zero with the
difference that the vector of errors is `e = [eψ, eθ , eu, ez],
where ez = zd − zv similar to the waypoint tracking. The
vehicle starts from the same initial position of the waypoint
tracking scenario [0, 0, 0]. the proposed training target was
the vector [40, 40, 5] and the selected test target points are
[30, 30, 5] and [90, 100, 5]. A total of 1500 sparse points
was located as the limiter from which a sparse model will be
employed. The policy and simulation were executed at 5Hz.
A noise of σ 2 = 0.005 was employed for the simulation and
a σ 2 = 0.2was employed for the start position of the vehicle.
When the vehicle arrives at 3m of the objective the vehicle
will be given the secondary target as the new objective. I If
the vehicle arrives at 1m of the final target the simulation
will stop.

5.4 Path tracking

With the aim to test the capability of PILCO for path tracking,
the scenario consists of a single policy to control propeller
force, elevator force and rudder force of the vehicle. The
decision to learn the force and not to control direct the RPM
and angle of the fins was to be able to compare the policy
to a standard controller from the literature. In the design of
the authors path tracking simulation, the equation presented
in section Sect. 3. Figure 7 shows the block diagram of the
control implementation whereby in the case of PILCO the
policy will evolve based on the learned GPs. The target of all
learned policies is to reduce the vector of errors [eμ, eυ, eχ ]
to zero. A LOS-PID was used as a performance comparison.
The LOS-PID (Fig. 7) with the exact coefficient of the model
was coded in the same ways as (Xiang et al. 2017) with the
inclusion of measurement noise. The initial position of the
vehiclewas established as [60, 3, 1]with an initial orientation
[0, 0, 3π/4]. A total of 1500 sparse points was located as the
limiter fromwhich a sparse model will be employed. A noise
with σ 2 = 0.001 was employed throughout the simulation
and a random variation of the start point with a variance
of σ 2 = 0.2 was employed. Higher values of σ were not
possible for the LOS-PID to be comparable as it was not
able to overcome higher values of noise. Both the PID and
PILCO policy were executed at a frequency of 10Hz. A helix
path (Fig. 8) was parametrized as is show in Eq. (20).

Xheli x = 60 cos(0.02618 wramp(t))

Yheli x = 60 sin(0.02618 wramp(t))

Zheli x = 2 + 2 wramp(t)/200 (20)
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where wramp(t) is a function over time with a slope m. The
control learning of the vehicle was done over the first 20 s at
a frequency of 10Hz.

6 Results

6.1 Waypoint tracking

As evident in Fig. 11, the learning of a policy for way-
point tracking of an AUV is possible with the application of
PILCO. However, reinforcement learning does not require
the calibration of parameters, but rather, requires the tuning
of the parameters of the Q matrix from the cost function.
For the cost function design, the surge speed was given a
higher importance in the cost function than the other error
vectors. This escalation of each target in the learning policy
was needed as an underactuated AUV needs to get to a spe-
cific speed to be able to dive and navigate with a more linear
model. An example of the data employed to create the GPs
model can be seen in Fig. 9.

The authors simulations showed that the required number
of episodes over the platformwas under 25 to obtain a usable
policy to control the vehicle and be able to arrive at all three
targets. Figure 10 shows the evolution of the cost function
over time for the platform. The cost function drops rapidly
to a low value as the vehicle learns to control the surge speed
and from there, how to control its orientation. The decision
to do this is based in that the control surfaces as fin require a
minimum speed to be useful.

The result from the final policy selected is shown in
Fig. 11; plotting against the results from the PID controller
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Fig. 11 3DviewWaypoint tracking comparative result between PILCO
and PID Results

for the same scenario. Both PID and PILCO arrive near to
both test point. However, PILCO shows a more direct route
taken towards the targets.ThePIDcontroller took 1201 cycles
to arrive equivalent to 240.2 s and the PILCO policy took 569
cycles equivalent to 113.8 s. PILCO has an advantage over
a simple PID as PILCO has learned the policy over a noisy
platform(or enviroment) and the PID does not have any com-
ponent to compensate for the noise in the measurement. For
PID to compensates for the noise an observer will have to be
designed and implemented. However, this will increase the
complexity of the controller and the need for more design
and calibration time for the PID controller. The results show
that the waypoint tracking with a PILCO controller can be a
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viable option as the tuning of the controller coefficients are
practically zero. The robustness of thePILCOpolicy is higher
as the platform will start the learning from different angles
and can overcome noise in the measurement. The policy is
also updated in case of failure. A down point of PILCO in the
simulated scenarios is that the controller tries to always have
the same behaviour, e.g. if the vehicle dives a little before
directing to the first point after the second point the policy
will try to repeat the same behaviour.

6.2 Depth control

The simulation of simultaneouswaypoint tracking, and depth
control of underwater vehicles shows that PILCO can learn
a complex policy to control the vehicle. An example of the
training data used for learning the vehicle GPs model can be
seen in Fig. 12. The quality of the learning of the GPs model
is directly related to the quality of the learning of the policy.
After 20 episodes episodes over the platform a good quality
GPs model has been learned such that a policy can be learnt.
The evolution of the cost function over time can be seen in
Fig. 13. In similar way to the standard waypoint tracking, the
cost evolves very fast to a low value and then small changes
are done in the policy learning. This small change is produced
by the scaling of each of the targets to be obtained.
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Figure 14 shows the results of policy 22. The policy is
capable of keeping the depth at near to 5m and at the same
time keep all four errors at near zero value. Usually, the task
described here will be done with two controllers a depth
controller and a azimuth controller. As we are applying a
single controller with two targets(elevation, depth) that at
the start go on different paths. The [X ,Y , Z ] results from
the simulation are presented in Fig. 15. The policy produces
a different behaviour than normal controllers, if by operator
error a target was setup with a different depth than the desire
depth the learned policy will try to push the vehicle to the
target disregarding the depth by a small quantity such the
target can be completed this can be observed in Fig. 16 . Three
targetswere setups as [30, 30, 5], [70, 70, 3], and [90, 100, 5]
the second target is outside of the desire depth of the policy.

6.3 Path tracking

The training evolution of the GPs model in the direction of
a better policy allows PILCO to search for a better policy
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after each iteration with the real model (Fig. 18). Figure 17
presents an example of the data used for training of the GPs
model that is later used for policy search. The reinforcement
learning simulation to learn a LOS controller with PILCO
shows that the reinforcement learning algorithm can learn to
follow the desired path based on the desire angles produced
by a LOS law (Fig. 18). The policy can perform better than
a LOS-PID controller that is without noise compensation
algorithms. The results from the PID to follow the LOS law
can be seen in Fig. 19, without noise the PID can stabilize
himself very fast but with minimum noise in the depth sensor
the χ angle cannot be completely stable and the controller
will fluctuate. In the same way, PILCO controller (Fig. 20)
reacts to the noise of the measurement but can follow the
desired path in a better way that the LOS-PID controller
implemented.

The measurement of the RMSE between the desire vehi-
cle position and the vehicle position for both LOS-PID and
LOS-PILCO is presented in Table 3. LOS-PILCO is shown
to out-perform the PID controller in the reduction of error
between the LOS law and the vehicle position. Not only in
the accuracy of placing the vehicle in the correct position but
in the speed of deployment of a controller to follow LOSwill
LOS-PILCOwill require less tuning with field tests. Another

Fig. 19 Desire LOS angles and speed and vehicle LOS angles and
speed produced by PID controller

Fig. 20 Desire LOS angles and speed and vehicle LOS angles and
speed produced by PILCO policy

Table 3 RMSE results from
LOS-PID and LOS-PILCO

RMSE Value

LOS-PID 1.214

LOS-PILCO 0.89

advantage of PILCO is the absence of knowledge from the
vehicle coefficients and not need to use other vehicles vari-
ables a surge, heave and sway speeds.

Figures 21 and22present the comparative plots of position
in X ,Y , Z and the 3D path taken by the vehicle with LOS-
PID controller and LOS-PILCO policy. Both controllers
shows their ability to direct the AUV to the desired path,
with the PILCO policy showing a better performance after
episode 20. The first 60 s of the produced signals from the
selectedPILCOpolicy in comparison to the signals generated
by the PID controller can be seen in Fig. 23. All the com-
manded signals are in the range of response of the actuators
and the noise level of both are in the expected range. PILCO
and PID commanded signal for propeller are very similar
in their behaviour. In contrast, the commanded signals of
PILCO tend to response in a more energetic and harmonic
form to the platform disturbance.
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7 Conclusions

This paper investigates the applicability of PILCOalgorithms
and its requirements to learn policies to control underactuated
AUVs. Three sets of simulations were designed to evaluate
the capability of PILCO for waypoint tracking, depth con-
trol and path tracking. The simulations shown that a simple
waypoint tracking control can be learnt in a small quantity
of experiments over the real vehicle, the performance of the
learnt policy was compared with a PID controller which is
over-performed by the policy as the policy obtained is learned
over the platform and the non-parametric model includes
noise.

In a similar way, a depth control policy was learned by
mixing the waypoint tracking objective with the depth objec-
tive. However, in this research the learning of a policy to
only control depth was not successful as the GPs model to
allow the learning of a policy requires more information.
Nevertheless, in the simulation of depth control it had been
shown that a policy of depth control can be obtained by the
learning of simultaneous waypoint tracking and depth con-
trol. The combination of objectives gives us a more intuitive
behaviour, similar to what a humanwill do with the proposed
objectives.

In the case of the proposed LOS-PILCO methodology, it
has been shown that PILCO is a viable option to learn a pol-
icy to minimize the error between a LOS law and the vehicle
position. The PILCO policy is shown to perform equally and
sometimes better than a PID. The RMSE shows that PILCO
can obtain better performance and the long period of simu-
lation shows that the learned policy can constantly minimize
the error to the desired value.

In the real deployment of PILCO inMULLAYAAUV, the
full PILCOalgorithmwill not be deployed as theMULLAYA
AUV currently only possesses a dual core processor and pre-
test have showed that running the full learning process is too
computational expensive. The integration of the full learning
process will be reassessed in the next hardware phase of the
vehicle. The policy will be the only deployment to the vehi-
cle and the logged data from the inertial navigation data will
be the source for the improvement of the GPs model and the
learning of the new policy. GPs models are less sensitive to
the noise as their kernel include a function of smoothness of
the predicted data. However, this may be not enough to com-
pensate for the highly noisy underwater environment. In the
case of noise overpassing the predicted limits, the presented
model with exponentiated quadratic kernel can be modified
to include the convolution of kernels adding awhite noise ker-
nel for noise modelling. Other algorithms can over perform
a policy obtained by PILCO to control underwater vehicles.
However, PILCO can be deployed in a short time as the need
of building a mathematical model of long hours of testing
can be reduced. In the case of MULLAYAAUV is a solution
for the constant shape change and deployment of new tech-
nology. Further exploration of other model based algorithms
for reinforced learning such as model based deep reinforced
learning need to be explored.

PILCOalgorithm has shown that is applicable to an under-
actuated AUV. In the simulations were consider limits that
are a requirement for safety of the vehicle as maximum depth
and maximum angles. The limits imposed to the platform do
not limited the capability of PILCO to learn a viable policy.
In the design of the cost function, the vehicle shape and type
of actuators force the selection of values of the cost function
such that forward speed has to represent a higher cost than the
specific vehicle angles or position. Model based reinforce-
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ment learning for underactuated AUV shows to be a solution
motion control of underwater vehicles and can be a solution
to control bioinspired vechicles which are more dynamically
complex to describe with a mathematical model.
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Maritime College, and constant support on the platform development.
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